基本情况:
康金彩,女,1995年12月生,博士,毕业于西南大学基础数学专业。主要从事非线性泛函分析方向的研究工作, 在《J. Differential Equations》、《J. Geom. Anal.》、《Discrete Contin. Dyn. Syst.》、《Nonlinear Anal.》以及《J. Math. Phys.》等重要学术期刊上发表学术论文10 余篇。
教育经历:
2014.09-2018.06 重庆文理学院,本科
2018.09-2021.06 西南大学, 硕士
2021.09-2025.06 西南大学, 博士
工作经历:
2025.09—至今 重庆文理学院,讲师
所授课程:
复变函数
研究兴趣:
临界点理论,非线性泛函分析
发表论文:
1. J.-C. Kang, Y.-Y. Li, C.-L. Tang, Multiple normalized solutions for Schrödinger-Maxwell equation with Sobolev critical exponent and mixed nonlinearities, J. Differential Equations, 443 (2025) 113564. (中科院 1区top)
2. J.-C. Kang, X.-Q. Liu, C.-L. Tang, Chern-Simons limit of ground state solutions for the Schrödinger equations coupled with a neutral scalar field, J. Differential Equations, 343 (2023) 152-185.(中科院 2区top)
3. J.-C. Kang, X.-Q. Liu, C.-L. Tang, Ground state sign-changing solutions for critical Schrödinger-Poisson system with steep potential well, J. Geom. Anal., 33 (2023) No. 59. (中科院 2区)
4. J.-C. Kang, C.-L. Tang, Normalized solutions for the nonlinear Schrödinger equation with potential and combined nonlinearities, Nonlinear Anal.,246 (2024) 113581.(中科院 2区)
5. J.-C. Kang, C.-L. Tang, Nonexistence result for Chern-Simons-Schrödinger-Higgs system, Appl. Math. Lett., 131 (2022) 108055.(中科院 2区)
6. J.-C. Kang, Y.-Y. Li, C.-L. Tang, Prescribed mass standing waves for Schrödinger-Maxwell equations with combined nonlinearities, Discrete Contin. Dyn. Syst., 45 (2025) 3296-3344. (中科院 3区)
7. J.-C. Kang, X.-P. Chen, C.-L. Tang, Ground state solutions for Schrödinger-Poisson system with critical growth and nonperiodic potential, J. Math. Phys., 63 (2022) 101501.(中科院 3区)
8. J.-C. Kang, C.-L. Tang, Ground states for the nonlinear Schrödinger equation with critical growth and potential, Results Math., 79 (2024) 133.(中科院 3区)
9. J.-C. Kang, C.-L. Tang, Ground states for Chern-Simons-Schrödinger system with nonperiodic Potential, J. Fixed Point Theory Appl., 25 (2023) Paper No. 37(中科院3区)
10. J.-C. Kang, X.-Q. Liu, C.-L. Tang, Ground state sign-changing solution for Schrödinger-
Poisson system with steep potential well, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023) 1068-1091. (中科院4区)
11. J.-C. Kang, C.-L. Tang, Ground state radial sign-changing solutions for a gauged nonlinear
Schrödinger equation involving critical growth, Commun. Pure Appl. Anal., 19 (2020) 5239-5252.(中科院3区)